伯克利大学的系列作品Dex-Net
,号称能够达到 95%的准确率。
dex-net 4.0
官网在https://berkeleyautomation.github.io/dex-net/,训练使用的数据集可以在这里下载到,文件极大(训练一个模型 8GB 数据,一共十多个模型),请在网络优良的情况下下载。
书归正传,谈一谈dex-net
论文的阅读体会。
dex-net 2.0
的主要工作是这个
一个卷积神经网络
我也不知道为什么dex-net 4.0
没有把
我觉得可以做一个多 head 的输出。
所以从这张图来看,dex-net 4.0
最主要的改进是增加了Abibdextrous Policy
以确定以何种机械臂执行抓取。从其目的来看很像一个 Ensemble 方法。
至于代码,洋洋洒洒几千行代码,大部分却是在填TensorFlow
的坑。唯一看来有用的,就只有以下一段定义神经网络的YAML
文件了:
### GQCNN CONFIG ###
gqcnn:
# basic data metrics
im_height: 96
im_width: 96
im_channels: 1
debug: *debug
seed: *seed
# needs to match input data mode that was used for training, determines the pose dimensions for the network
gripper_mode: parallel_jaw
# method by which to integrate depth into the network
input_depth_mode: im_depth_sub
# used for training with multiple angular predictions
angular_bins: 16
# prediction batch size, in training this will be overriden by the val_batch_size in the optimizer's config file
batch_size: *val_batch_size
# architecture
architecture:
im_stream:
conv1_1:
type: conv
filt_dim: 9
num_filt: 16
pool_size: 1
pool_stride: 1
pad: VALID
norm: 0
norm_type: local_response
conv1_2:
type: conv
filt_dim: 5
num_filt: 16
pool_size: 2
pool_stride: 2
pad: VALID
norm: 0
norm_type: local_response
conv2_1:
type: conv
filt_dim: 5
num_filt: 16
pool_size: 1
pool_stride: 1
pad: VALID
norm: 0
norm_type: local_response
conv2_2:
type: conv
filt_dim: 5
num_filt: 16
pool_size: 2
pool_stride: 2
pad: VALID
norm: 0
norm_type: local_response
fc3:
type: fc
out_size: 128
fc4:
type: fc
out_size: 128
fc5:
type: fc
out_size: 32
# architecture normalization constants
radius: 2
alpha: 2.0e-05
beta: 0.75
bias: 1.0
# leaky relu coefficient
relu_coeff: 0.0
最后更新:
2023-03-28