Clean Code¶
建议参考:https://github.com/chenyuntc/pytorch-best-practice
或者我的一份 fork:https://github.com/Dandelight/pytorch-best-practice
ignite¶
PyTorch 没有高层 API——至少是 Keras
那个级别的三行代码走天下。一方面,这有助于工程师集中精力于核心功能,提高竞争力;另一方面,社区却迟迟没有给出一个合适的高层框架,代码库里各种 home-made framework 满天飞,一个 acc
或者 pr-curve
都要自己写,反射机制就更费劲了。自己也不是没造过轮子,不过看到昇思和飞桨都自带高层 API 瞬间感觉手里的 Torch 不香了。
Ignite is a library that provides three high-level features:
- Extremely simple engine and event system
- Out-of-the-box metrics to easily evaluate models
- Built-in handlers to compose training pipeline, save artifacts and log parameters and metrics
这里甚至有类似 Spring Initializr 的 code generator,通过简单的选项一键生成合适的初始代码。
Lightning¶
官网上慷慨地贴了一段自编码器的代码,一切尽在代码中了。
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.data import random_split
from torchvision.datasets import MNIST
from torchvision import transforms
import pytorch_lightning as pl
class LitAutoEncoder(pl.LightningModule):
def __init__(self):
super().__init__()
self.encoder = nn.Sequential(
nn.Linear(28 * 28, 64),
nn.ReLU(),
nn.Linear(64, 3))
self.decoder = nn.Sequential(
nn.Linear(3, 64),
nn.ReLU(),
nn.Linear(64, 28 * 28))
def forward(self, x):
embedding = self.encoder(x)
return embedding
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
return optimizer
def training_step(self, train_batch, batch_idx):
x, y = train_batch
x = x.view(x.size(0), -1)
z = self.encoder(x)
x_hat = self.decoder(z)
loss = F.mse_loss(x_hat, x)
self.log('train_loss', loss)
return loss
def validation_step(self, val_batch, batch_idx):
x, y = val_batch
x = x.view(x.size(0), -1)
z = self.encoder(x)
x_hat = self.decoder(z)
loss = F.mse_loss(x_hat, x)
self.log('val_loss', loss)
# data
dataset = MNIST('', train=True, download=True, transform=transforms.ToTensor())
mnist_train, mnist_val = random_split(dataset, [55000, 5000])
train_loader = DataLoader(mnist_train, batch_size=32)
val_loader = DataLoader(mnist_val, batch_size=32)
# model
model = LitAutoEncoder()
# training
trainer = pl.Trainer(gpus=4, num_nodes=8, precision=16, limit_train_batches=0.5)
trainer.fit(model, train_loader, val_loader)
虽然真的想说,组合胜过继承,但看在它还挺直白好用,加上 21K Star 的份上,个人觉得还挺可以的。Lightning AI 也是一家比较出众的创业公司,让我们静观其变吧。