Eig in scipy
这篇的起因其实是 scipy.linalg.eigh
的几个重载表现不一致,因为难以从数学上解释~或者说我数学挺菜的不会解释~,决定从源码中一探究竟。
eigh
的完整源码放在了文末,正文中,我们仅保留有关决策的部分
def eigh(a, b=None, lower=True, eigvals_only=False, overwrite_a=False,
overwrite_b=False, turbo=False, eigvals=None, type=1,
check_finite=True, subset_by_index=None, subset_by_value=None,
driver=None):
# Lower 的设置,默认为 'L'
uplo = 'L' if lower else 'U'
# 并行用到的,不用管
_job = 'N' if eigvals_only else 'V'
# 重要,driver 决定了要使用 LAPACK 中哪个函数
drv_str = [None, "ev", "evd", "evr", "evx", "gv", "gvd", "gvx"]
# 是否覆写 a,对我们没太大影响
overwrite_a = overwrite_a or (_datacopied(a1, a))
# 是否为复数矩阵,决定了是用复数子进程还是用实数子进程
cplx = True if iscomplexobj(a1) else False
n = a1.shape[0]
# subset_by_index 和 subset_by_value 进行一些设置,我们暂时用不到,略
# 重要,prefix,表示是 HErmitian 还是 SYmmetric,决定调用哪个函数
pfx = 'he' if cplx else 'sy'
# decide on the driver if not given
# first early exit on incompatible choice
if driver:
# 略去用户自己指定 driver 的情形
pass
# Default driver is evr and gvd
# 看到这里我们清楚了,如果传入了 b,则使用 evr,否则使用 gvd
else:
driver = "evr" if b is None else ("gvx" if subset else "gvd")
lwork_spec = {
'syevd': ['lwork', 'liwork'],
'syevr': ['lwork', 'liwork'],
'heevd': ['lwork', 'liwork', 'lrwork'],
'heevr': ['lwork', 'lrwork', 'liwork'],
}
if b is None: # Standard problem
# 拿到 driver
drv, drvlw = get_lapack_funcs((pfx + driver, pfx+driver+'_lwork'),
[a1])
clw_args = {'n': n, 'lower': lower}
if driver == 'evd':
clw_args.update({'compute_v': 0 if _job == "N" else 1})
lw = _compute_lwork(drvlw, **clw_args)
# Multiple lwork vars
if isinstance(lw, tuple):
lwork_args = dict(zip(lwork_spec[pfx+driver], lw))
else:
lwork_args = {'lwork': lw}
drv_args.update({'lower': lower, 'compute_v': 0 if _job == "N" else 1})
# 这里是送入 Fortran subroutine 计算
w, v, *other_args, info = drv(a=a1, **drv_args, **lwork_args)
else: # Generalized problem
# 差不多的流程,把 evr 换成了 gvd
# Check if we had a successful exit
if info == 0:
if eigvals_only:
return w
else:
return w, v
else:
# 一堆报错,不用看了
raise LinAlgError()
可见,如果同时提供了 \(A\) 和 \(B\) 矩阵,则调用 evr
驱动;如果只提供了 \(A\) 矩阵,则调用 gvd
驱动。问题来了,这俩又是啥?
在 drv
中,执行流就离开了 Python
进入了 Fortran
代码。scipy
的数值计算~和某著名大型商业数学软件一样~是 Powered by LAPACK 的,所以抱着憧憬的心情我下载了 LAPACK 的代码,
$ ls SRC/
CMakeLists.txt dlantp.f spftri.f
DEPRECATED dlantr.f spftrs.f
Makefile dlanv2.f spocon.f
VARIANTS dlaorhr_col_getrfnp.f spoequ.f
cbbcsd.f dlaorhr_col_getrfnp2.f spoequb.f
cbdsqr.f dlapll.f sporfs.f
cgbbrd.f dlapmr.f sporfsx.f
cgbcon.f dlapmt.f sposv.f
cgbequ.f dlapy2.f sposvx.f
cgbequb.f dlapy3.f sposvxx.f
cgbrfs.f dlaqgb.f spotf2.f
cgbrfsx.f dlaqge.f spotrf.f
cgbsv.f dlaqp2.f spotrf2.f
# 略去二百来个 .f 文件
这么一串没把我吓晕。但奇怪归奇怪,文件命名总有个规律,否则怎么维护怎么使用呢?果然可以很容搜索到 LAPACK subroutine 的命名规范:
LAPACK 函数以
XYYZZZ
命名
X
表示数据类型
s
单精度实数c
单精度复数d
双精度实数z
双精度复数而
YY
表示矩阵的性质
BD bidiagonal DI diagonal GB general band GE general (i.e., unsymmetric, in some cases rectangular) GG general matrices, generalized problem (i.e., a pair of general matrices) GT general tridiagonal HB (complex) Hermitian band HE (complex) Hermitian HG upper Hessenberg matrix, generalized problem (i.e a Hessenberg and a triangular matrix) HP (complex) Hermitian, packed storage HS upper Hessenberg OP (real) orthogonal, packed storage OR (real) orthogonal PB symmetric or Hermitian positive definite band PO symmetric or Hermitian positive definite PP symmetric or Hermitian positive definite, packed storage PT symmetric or Hermitian positive definite tridiagonal SB (real) symmetric band SP symmetric, packed storage ST (real) symmetric tridiagonal SY symmetric TB triangular band TG triangular matrices, generalized problem (i.e., a pair of triangular matrices) TP triangular, packed storage TR triangular (or in some cases quasi-triangular) TZ trapezoidal UN (complex) unitary UP (complex) unitary, packed storage
ZZZ
表示算法名称,比如GVX
表示 Generalized Eigenvalue Problem (我也不知道X
哪来的),EVR
表示 Eigenvalue Problem(我更不知道R
是哪来的了)
但说实在的,我真的看不懂这早期 Fortran
代码,只能让各位看官评判了
SUBROUTINE DSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
$ ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
$ IWORK, LIWORK, INFO )
*
* -- LAPACK driver routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER JOBZ, RANGE, UPLO
INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
DOUBLE PRECISION ABSTOL, VL, VU
* ..
* .. Array Arguments ..
INTEGER ISUPPZ( * ), IWORK( * )
DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL ALLEIG, INDEIG, LOWER, LQUERY, VALEIG, WANTZ,
$ TRYRAC
CHARACTER ORDER
INTEGER I, IEEEOK, IINFO, IMAX, INDD, INDDD, INDE,
$ INDEE, INDIBL, INDIFL, INDISP, INDIWO, INDTAU,
$ INDWK, INDWKN, ISCALE, J, JJ, LIWMIN,
$ LLWORK, LLWRKN, LWKOPT, LWMIN, NB, NSPLIT
DOUBLE PRECISION ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
$ SIGMA, SMLNUM, TMP1, VLL, VUU
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, DLANSY
EXTERNAL LSAME, ILAENV, DLAMCH, DLANSY
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DORMTR, DSCAL, DSTEBZ, DSTEMR, DSTEIN,
$ DSTERF, DSWAP, DSYTRD, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
IEEEOK = ILAENV( 10, 'DSYEVR', 'N', 1, 2, 3, 4 )
*
LOWER = LSAME( UPLO, 'L' )
WANTZ = LSAME( JOBZ, 'V' )
ALLEIG = LSAME( RANGE, 'A' )
VALEIG = LSAME( RANGE, 'V' )
INDEIG = LSAME( RANGE, 'I' )
*
LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
*
LWMIN = MAX( 1, 26*N )
LIWMIN = MAX( 1, 10*N )
*
INFO = 0
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
INFO = -2
ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE
IF( VALEIG ) THEN
IF( N.GT.0 .AND. VU.LE.VL )
$ INFO = -8
ELSE IF( INDEIG ) THEN
IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
INFO = -10
END IF
END IF
END IF
IF( INFO.EQ.0 ) THEN
IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
INFO = -15
ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -18
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
INFO = -20
END IF
END IF
*
IF( INFO.EQ.0 ) THEN
NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
NB = MAX( NB, ILAENV( 1, 'DORMTR', UPLO, N, -1, -1, -1 ) )
LWKOPT = MAX( ( NB+1 )*N, LWMIN )
WORK( 1 ) = LWKOPT
IWORK( 1 ) = LIWMIN
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DSYEVR', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
M = 0
IF( N.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
IF( N.EQ.1 ) THEN
WORK( 1 ) = 7
IF( ALLEIG .OR. INDEIG ) THEN
M = 1
W( 1 ) = A( 1, 1 )
ELSE
IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
M = 1
W( 1 ) = A( 1, 1 )
END IF
END IF
IF( WANTZ ) THEN
Z( 1, 1 ) = ONE
ISUPPZ( 1 ) = 1
ISUPPZ( 2 ) = 1
END IF
RETURN
END IF
*
* Get machine constants.
*
SAFMIN = DLAMCH( 'Safe minimum' )
EPS = DLAMCH( 'Precision' )
SMLNUM = SAFMIN / EPS
BIGNUM = ONE / SMLNUM
RMIN = SQRT( SMLNUM )
RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
*
* Scale matrix to allowable range, if necessary.
*
ISCALE = 0
ABSTLL = ABSTOL
IF (VALEIG) THEN
VLL = VL
VUU = VU
END IF
ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
ISCALE = 1
SIGMA = RMIN / ANRM
ELSE IF( ANRM.GT.RMAX ) THEN
ISCALE = 1
SIGMA = RMAX / ANRM
END IF
IF( ISCALE.EQ.1 ) THEN
IF( LOWER ) THEN
DO 10 J = 1, N
CALL DSCAL( N-J+1, SIGMA, A( J, J ), 1 )
10 CONTINUE
ELSE
DO 20 J = 1, N
CALL DSCAL( J, SIGMA, A( 1, J ), 1 )
20 CONTINUE
END IF
IF( ABSTOL.GT.0 )
$ ABSTLL = ABSTOL*SIGMA
IF( VALEIG ) THEN
VLL = VL*SIGMA
VUU = VU*SIGMA
END IF
END IF
* Initialize indices into workspaces. Note: The IWORK indices are
* used only if DSTERF or DSTEMR fail.
* WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the
* elementary reflectors used in DSYTRD.
INDTAU = 1
* WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries.
INDD = INDTAU + N
* WORK(INDE:INDE+N-1) stores the off-diagonal entries of the
* tridiagonal matrix from DSYTRD.
INDE = INDD + N
* WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over
* -written by DSTEMR (the DSTERF path copies the diagonal to W).
INDDD = INDE + N
* WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over
* -written while computing the eigenvalues in DSTERF and DSTEMR.
INDEE = INDDD + N
* INDWK is the starting offset of the left-over workspace, and
* LLWORK is the remaining workspace size.
INDWK = INDEE + N
LLWORK = LWORK - INDWK + 1
* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
* stores the block indices of each of the M<=N eigenvalues.
INDIBL = 1
* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
* stores the starting and finishing indices of each block.
INDISP = INDIBL + N
* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
* that corresponding to eigenvectors that fail to converge in
* DSTEIN. This information is discarded; if any fail, the driver
* returns INFO > 0.
INDIFL = INDISP + N
* INDIWO is the offset of the remaining integer workspace.
INDIWO = INDIFL + N
*
* Call DSYTRD to reduce symmetric matrix to tridiagonal form.
*
CALL DSYTRD( UPLO, N, A, LDA, WORK( INDD ), WORK( INDE ),
$ WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
*
* If all eigenvalues are desired
* then call DSTERF or DSTEMR and DORMTR.
*
IF( ( ALLEIG .OR. ( INDEIG .AND. IL.EQ.1 .AND. IU.EQ.N ) ) .AND.
$ IEEEOK.EQ.1 ) THEN
IF( .NOT.WANTZ ) THEN
CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
CALL DSTERF( N, W, WORK( INDEE ), INFO )
ELSE
CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
CALL DCOPY( N, WORK( INDD ), 1, WORK( INDDD ), 1 )
*
IF (ABSTOL .LE. TWO*N*EPS) THEN
TRYRAC = .TRUE.
ELSE
TRYRAC = .FALSE.
END IF
CALL DSTEMR( JOBZ, 'A', N, WORK( INDDD ), WORK( INDEE ),
$ VL, VU, IL, IU, M, W, Z, LDZ, N, ISUPPZ,
$ TRYRAC, WORK( INDWK ), LWORK, IWORK, LIWORK,
$ INFO )
*
*
*
* Apply orthogonal matrix used in reduction to tridiagonal
* form to eigenvectors returned by DSTEMR.
*
IF( WANTZ .AND. INFO.EQ.0 ) THEN
INDWKN = INDE
LLWRKN = LWORK - INDWKN + 1
CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA,
$ WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
$ LLWRKN, IINFO )
END IF
END IF
*
*
IF( INFO.EQ.0 ) THEN
* Everything worked. Skip DSTEBZ/DSTEIN. IWORK(:) are
* undefined.
M = N
GO TO 30
END IF
INFO = 0
END IF
*
* Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
* Also call DSTEBZ and DSTEIN if DSTEMR fails.
*
IF( WANTZ ) THEN
ORDER = 'B'
ELSE
ORDER = 'E'
END IF
CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
$ WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
$ IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWK ),
$ IWORK( INDIWO ), INFO )
*
IF( WANTZ ) THEN
CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
$ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
$ WORK( INDWK ), IWORK( INDIWO ), IWORK( INDIFL ),
$ INFO )
*
* Apply orthogonal matrix used in reduction to tridiagonal
* form to eigenvectors returned by DSTEIN.
*
INDWKN = INDE
LLWRKN = LWORK - INDWKN + 1
CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
$ LDZ, WORK( INDWKN ), LLWRKN, IINFO )
END IF
*
* If matrix was scaled, then rescale eigenvalues appropriately.
*
* Jump here if DSTEMR/DSTEIN succeeded.
30 CONTINUE
IF( ISCALE.EQ.1 ) THEN
IF( INFO.EQ.0 ) THEN
IMAX = M
ELSE
IMAX = INFO - 1
END IF
CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
END IF
*
* If eigenvalues are not in order, then sort them, along with
* eigenvectors. Note: We do not sort the IFAIL portion of IWORK.
* It may not be initialized (if DSTEMR/DSTEIN succeeded), and we do
* not return this detailed information to the user.
*
IF( WANTZ ) THEN
DO 50 J = 1, M - 1
I = 0
TMP1 = W( J )
DO 40 JJ = J + 1, M
IF( W( JJ ).LT.TMP1 ) THEN
I = JJ
TMP1 = W( JJ )
END IF
40 CONTINUE
*
IF( I.NE.0 ) THEN
W( I ) = W( J )
W( J ) = TMP1
CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
END IF
50 CONTINUE
END IF
*
* Set WORK(1) to optimal workspace size.
*
WORK( 1 ) = LWKOPT
IWORK( 1 ) = LIWMIN
*
RETURN
*
* End of DSYEVR
*
END
SUBROUTINE DSYGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
$ VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
$ LWORK, IWORK, IFAIL, INFO )
*
* -- LAPACK driver routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER JOBZ, RANGE, UPLO
INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
DOUBLE PRECISION ABSTOL, VL, VU
* ..
* .. Array Arguments ..
INTEGER IFAIL( * ), IWORK( * )
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), W( * ), WORK( * ),
$ Z( LDZ, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
CHARACTER TRANS
INTEGER LWKMIN, LWKOPT, NB
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL LSAME, ILAENV
* ..
* .. External Subroutines ..
EXTERNAL DPOTRF, DSYEVX, DSYGST, DTRMM, DTRSM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
UPPER = LSAME( UPLO, 'U' )
WANTZ = LSAME( JOBZ, 'V' )
ALLEIG = LSAME( RANGE, 'A' )
VALEIG = LSAME( RANGE, 'V' )
INDEIG = LSAME( RANGE, 'I' )
LQUERY = ( LWORK.EQ.-1 )
*
INFO = 0
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
INFO = -1
ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -2
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
INFO = -3
ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE
IF( VALEIG ) THEN
IF( N.GT.0 .AND. VU.LE.VL )
$ INFO = -11
ELSE IF( INDEIG ) THEN
IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
INFO = -13
END IF
END IF
END IF
IF (INFO.EQ.0) THEN
IF (LDZ.LT.1 .OR. (WANTZ .AND. LDZ.LT.N)) THEN
INFO = -18
END IF
END IF
*
IF( INFO.EQ.0 ) THEN
LWKMIN = MAX( 1, 8*N )
NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
LWKOPT = MAX( LWKMIN, ( NB + 3 )*N )
WORK( 1 ) = LWKOPT
*
IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
INFO = -20
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DSYGVX', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
M = 0
IF( N.EQ.0 ) THEN
RETURN
END IF
*
* Form a Cholesky factorization of B.
*
CALL DPOTRF( UPLO, N, B, LDB, INFO )
IF( INFO.NE.0 ) THEN
INFO = N + INFO
RETURN
END IF
*
* Transform problem to standard eigenvalue problem and solve.
*
CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
CALL DSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
$ M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL, INFO )
*
IF( WANTZ ) THEN
*
* Backtransform eigenvectors to the original problem.
*
IF( INFO.GT.0 )
$ M = INFO - 1
IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
*
* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
* backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
*
IF( UPPER ) THEN
TRANS = 'N'
ELSE
TRANS = 'T'
END IF
*
CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, M, ONE, B,
$ LDB, Z, LDZ )
*
ELSE IF( ITYPE.EQ.3 ) THEN
*
* For B*A*x=(lambda)*x;
* backtransform eigenvectors: x = L*y or U**T*y
*
IF( UPPER ) THEN
TRANS = 'T'
ELSE
TRANS = 'N'
END IF
*
CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, M, ONE, B,
$ LDB, Z, LDZ )
END IF
END IF
*
* Set WORK(1) to optimal workspace size.
*
WORK( 1 ) = LWKOPT
*
RETURN
*
* End of DSYGVX
*
END
# https://github.com/scipy/scipy/blob/46811bed97a375ecf700174cf86675e10fb57a57/scipy/linalg/_decomp.py#L117
def eig(a, b=None, left=False, right=True, overwrite_a=False,
overwrite_b=False, check_finite=True, homogeneous_eigvals=False):
"""
Solve an ordinary or generalized eigenvalue problem of a square matrix.
Find eigenvalues w and right or left eigenvectors of a general matrix::
a vr[:,i] = w[i] b vr[:,i]
a.H vl[:,i] = w[i].conj() b.H vl[:,i]
where ``.H`` is the Hermitian conjugation.
Parameters
----------
a : (M, M) array_like
A complex or real matrix whose eigenvalues and eigenvectors
will be computed.
b : (M, M) array_like, optional
Right-hand side matrix in a generalized eigenvalue problem.
Default is None, identity matrix is assumed.
left : bool, optional
Whether to calculate and return left eigenvectors. Default is False.
right : bool, optional
Whether to calculate and return right eigenvectors. Default is True.
overwrite_a : bool, optional
Whether to overwrite `a`; may improve performance. Default is False.
overwrite_b : bool, optional
Whether to overwrite `b`; may improve performance. Default is False.
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
homogeneous_eigvals : bool, optional
If True, return the eigenvalues in homogeneous coordinates.
In this case ``w`` is a (2, M) array so that::
w[1,i] a vr[:,i] = w[0,i] b vr[:,i]
Default is False.
Returns
-------
w : (M,) or (2, M) double or complex ndarray
The eigenvalues, each repeated according to its
multiplicity. The shape is (M,) unless
``homogeneous_eigvals=True``.
vl : (M, M) double or complex ndarray
The normalized left eigenvector corresponding to the eigenvalue
``w[i]`` is the column vl[:,i]. Only returned if ``left=True``.
vr : (M, M) double or complex ndarray
The normalized right eigenvector corresponding to the eigenvalue
``w[i]`` is the column ``vr[:,i]``. Only returned if ``right=True``.
Raises
------
LinAlgError
If eigenvalue computation does not converge.
See Also
--------
eigvals : eigenvalues of general arrays
eigh : Eigenvalues and right eigenvectors for symmetric/Hermitian arrays.
eig_banded : eigenvalues and right eigenvectors for symmetric/Hermitian
band matrices
eigh_tridiagonal : eigenvalues and right eiegenvectors for
symmetric/Hermitian tridiagonal matrices
Examples
--------
>>> import numpy as np
>>> from scipy import linalg
>>> a = np.array([0., -1.], [1., 0.](0., -1.], [1., 0..md){#6ae46ca820750846d132f76627760f79})
>>> linalg.eigvals(a)
array([0.+1.j, 0.-1.j])
>>> b = np.array([0., 1.], [1., 1.](0., 1.], [1., 1..md){#17679cb8e735a34e7fc00352e82fcfe6})
>>> linalg.eigvals(a, b)
array([ 1.+0.j, -1.+0.j])
>>> a = np.array([3., 0., 0.], [0., 8., 0.], [0., 0., 7.](3., 0., 0.], [0., 8., 0.], [0., 0., 7..md){#b24eaa72c37781db945912632f4d926e})
>>> linalg.eigvals(a, homogeneous_eigvals=True)
array([[3.+0.j, 8.+0.j, 7.+0.j],
[1.+0.j, 1.+0.j, 1.+0.j]])
>>> a = np.array([0., -1.], [1., 0.](0., -1.], [1., 0..md){#6ae46ca820750846d132f76627760f79})
>>> linalg.eigvals(a) == linalg.eig(a)[0]
array([ True, True])
>>> linalg.eig(a, left=True, right=False)[1] # normalized left eigenvector
array([[-0.70710678+0.j , -0.70710678-0.j ],
[-0. +0.70710678j, -0. -0.70710678j]])
>>> linalg.eig(a, left=False, right=True)[1] # normalized right eigenvector
array([[0.70710678+0.j , 0.70710678-0.j ],
[0. -0.70710678j, 0. +0.70710678j]])
"""
a1 = _asarray_validated(a, check_finite=check_finite)
if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
raise ValueError('expected square matrix')
overwrite_a = overwrite_a or (_datacopied(a1, a))
if b is not None:
b1 = _asarray_validated(b, check_finite=check_finite)
overwrite_b = overwrite_b or _datacopied(b1, b)
if len(b1.shape) != 2 or b1.shape[0] != b1.shape[1]:
raise ValueError('expected square matrix')
if b1.shape != a1.shape:
raise ValueError('a and b must have the same shape')
return _geneig(a1, b1, left, right, overwrite_a, overwrite_b,
homogeneous_eigvals)
geev, geev_lwork = get_lapack_funcs(('geev', 'geev_lwork'), (a1,))
compute_vl, compute_vr = left, right
lwork = _compute_lwork(geev_lwork, a1.shape[0],
compute_vl=compute_vl,
compute_vr=compute_vr)
if geev.typecode in 'cz':
w, vl, vr, info = geev(a1, lwork=lwork,
compute_vl=compute_vl,
compute_vr=compute_vr,
overwrite_a=overwrite_a)
w = _make_eigvals(w, None, homogeneous_eigvals)
else:
wr, wi, vl, vr, info = geev(a1, lwork=lwork,
compute_vl=compute_vl,
compute_vr=compute_vr,
overwrite_a=overwrite_a)
t = {'f': 'F', 'd': 'D'}[wr.dtype.char]
w = wr + _I * wi
w = _make_eigvals(w, None, homogeneous_eigvals)
_check_info(info, 'eig algorithm (geev)',
positive='did not converge (only eigenvalues '
'with order >= %d have converged)')
only_real = numpy.all(w.imag == 0.0)
if not (geev.typecode in 'cz' or only_real):
t = w.dtype.char
if left:
vl = _make_complex_eigvecs(w, vl, t)
if right:
vr = _make_complex_eigvecs(w, vr, t)
if not (left or right):
return w
if left:
if right:
return w, vl, vr
return w, vl
return w, vr
def eigh(a, b=None, lower=True, eigvals_only=False, overwrite_a=False,
overwrite_b=False, turbo=False, eigvals=None, type=1,
check_finite=True, subset_by_index=None, subset_by_value=None,
driver=None):
"""
Solve a standard or generalized eigenvalue problem for a complex
Hermitian or real symmetric matrix.
Find eigenvalues array ``w`` and optionally eigenvectors array ``v`` of
array ``a``, where ``b`` is positive definite such that for every
eigenvalue λ (i-th entry of w) and its eigenvector ``vi`` (i-th column of
``v``) satisfies::
a @ vi = λ * b @ vi
vi.conj().T @ a @ vi = λ
vi.conj().T @ b @ vi = 1
In the standard problem, ``b`` is assumed to be the identity matrix.
Parameters
----------
a : (M, M) array_like
A complex Hermitian or real symmetric matrix whose eigenvalues and
eigenvectors will be computed.
b : (M, M) array_like, optional
A complex Hermitian or real symmetric definite positive matrix in.
If omitted, identity matrix is assumed.
lower : bool, optional
Whether the pertinent array data is taken from the lower or upper
triangle of ``a`` and, if applicable, ``b``. (Default: lower)
eigvals_only : bool, optional
Whether to calculate only eigenvalues and no eigenvectors.
(Default: both are calculated)
subset_by_index : iterable, optional
If provided, this two-element iterable defines the start and the end
indices of the desired eigenvalues (ascending order and 0-indexed).
To return only the second smallest to fifth smallest eigenvalues,
``[1, 4]`` is used. ``[n-3, n-1]`` returns the largest three. Only
available with "evr", "evx", and "gvx" drivers. The entries are
directly converted to integers via ``int()``.
subset_by_value : iterable, optional
If provided, this two-element iterable defines the half-open interval
``(a, b]`` that, if any, only the eigenvalues between these values
are returned. Only available with "evr", "evx", and "gvx" drivers. Use
``np.inf`` for the unconstrained ends.
driver : str, optional
Defines which LAPACK driver should be used. Valid options are "ev",
"evd", "evr", "evx" for standard problems and "gv", "gvd", "gvx" for
generalized (where b is not None) problems. See the Notes section.
The default for standard problems is "evr". For generalized problems,
"gvd" is used for full set, and "gvx" for subset requested cases.
type : int, optional
For the generalized problems, this keyword specifies the problem type
to be solved for ``w`` and ``v`` (only takes 1, 2, 3 as possible
inputs)::
1 => a @ v = w @ b @ v
2 => a @ b @ v = w @ v
3 => b @ a @ v = w @ v
This keyword is ignored for standard problems.
overwrite_a : bool, optional
Whether to overwrite data in ``a`` (may improve performance). Default
is False.
overwrite_b : bool, optional
Whether to overwrite data in ``b`` (may improve performance). Default
is False.
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
turbo : bool, optional, deprecated
.. deprecated:: 1.5.0
`eigh` keyword argument `turbo` is deprecated in favour of
``driver=gvd`` keyword instead and will be removed in SciPy
1.12.0.
eigvals : tuple (lo, hi), optional, deprecated
.. deprecated:: 1.5.0
`eigh` keyword argument `eigvals` is deprecated in favour of
`subset_by_index` keyword instead and will be removed in SciPy
1.12.0.
Returns
-------
w : (N,) ndarray
The N (1<=N<=M) selected eigenvalues, in ascending order, each
repeated according to its multiplicity.
v : (M, N) ndarray
(if ``eigvals_only == False``)
Raises
------
LinAlgError
If eigenvalue computation does not converge, an error occurred, or
b matrix is not definite positive. Note that if input matrices are
not symmetric or Hermitian, no error will be reported but results will
be wrong.
See Also
--------
eigvalsh : eigenvalues of symmetric or Hermitian arrays
eig : eigenvalues and right eigenvectors for non-symmetric arrays
eigh_tridiagonal : eigenvalues and right eiegenvectors for
symmetric/Hermitian tridiagonal matrices
Notes
-----
This function does not check the input array for being Hermitian/symmetric
in order to allow for representing arrays with only their upper/lower
triangular parts. Also, note that even though not taken into account,
finiteness check applies to the whole array and unaffected by "lower"
keyword.
This function uses LAPACK drivers for computations in all possible keyword
combinations, prefixed with ``sy`` if arrays are real and ``he`` if
complex, e.g., a float array with "evr" driver is solved via
"syevr", complex arrays with "gvx" driver problem is solved via "hegvx"
etc.
As a brief summary, the slowest and the most robust driver is the
classical ``<sy/he>ev`` which uses symmetric QR. ``<sy/he>evr`` is seen as
the optimal choice for the most general cases. However, there are certain
occasions that ``<sy/he>evd`` computes faster at the expense of more
memory usage. ``<sy/he>evx``, while still being faster than ``<sy/he>ev``,
often performs worse than the rest except when very few eigenvalues are
requested for large arrays though there is still no performance guarantee.
For the generalized problem, normalization with respect to the given
type argument::
type 1 and 3 : v.conj().T @ a @ v = w
type 2 : inv(v).conj().T @ a @ inv(v) = w
type 1 or 2 : v.conj().T @ b @ v = I
type 3 : v.conj().T @ inv(b) @ v = I
Examples
--------
>>> import numpy as np
>>> from scipy.linalg import eigh
>>> A = np.array([6, 3, 1, 5], [3, 0, 5, 1], [1, 5, 6, 2], [5, 1, 2, 2](6, 3, 1, 5], [3, 0, 5, 1], [1, 5, 6, 2], [5, 1, 2, 2.md){#2006b7bc6ef9c04351345b90ec7a2c20})
>>> w, v = eigh(A)
>>> np.allclose(A @ v - v @ np.diag(w), np.zeros((4, 4)))
True
Request only the eigenvalues
>>> w = eigh(A, eigvals_only=True)
Request eigenvalues that are less than 10.
>>> A = np.array([[34, -4, -10, -7, 2],
... [-4, 7, 2, 12, 0],
... [-10, 2, 44, 2, -19],
... [-7, 12, 2, 79, -34],
... [2, 0, -19, -34, 29]])
>>> eigh(A, eigvals_only=True, subset_by_value=[-np.inf, 10])
array([6.69199443e-07, 9.11938152e+00])
Request the second smallest eigenvalue and its eigenvector
>>> w, v = eigh(A, subset_by_index=[1, 1])
>>> w
array([9.11938152])
>>> v.shape # only a single column is returned
(5, 1)
"""
if turbo:
warnings.warn("Keyword argument 'turbo' is deprecated in favour of '"
"driver=gvd' keyword instead and will be removed in "
"SciPy 1.12.0.",
DeprecationWarning, stacklevel=2)
if eigvals:
warnings.warn("Keyword argument 'eigvals' is deprecated in favour of "
"'subset_by_index' keyword instead and will be removed "
"in SciPy 1.12.0.",
DeprecationWarning, stacklevel=2)
# set lower
uplo = 'L' if lower else 'U'
# Set job for Fortran routines
_job = 'N' if eigvals_only else 'V'
drv_str = [None, "ev", "evd", "evr", "evx", "gv", "gvd", "gvx"]
if driver not in drv_str:
raise ValueError('"{}" is unknown. Possible values are "None", "{}".'
''.format(driver, '", "'.join(drv_str[1:])))
a1 = _asarray_validated(a, check_finite=check_finite)
if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
raise ValueError('expected square "a" matrix')
overwrite_a = overwrite_a or (_datacopied(a1, a))
cplx = True if iscomplexobj(a1) else False
n = a1.shape[0]
drv_args = {'overwrite_a': overwrite_a}
if b is not None:
b1 = _asarray_validated(b, check_finite=check_finite)
overwrite_b = overwrite_b or _datacopied(b1, b)
if len(b1.shape) != 2 or b1.shape[0] != b1.shape[1]:
raise ValueError('expected square "b" matrix')
if b1.shape != a1.shape:
raise ValueError("wrong b dimensions {}, should "
"be {}".format(b1.shape, a1.shape))
if type not in [1, 2, 3]:
raise ValueError('"type" keyword only accepts 1, 2, and 3.')
cplx = True if iscomplexobj(b1) else (cplx or False)
drv_args.update({'overwrite_b': overwrite_b, 'itype': type})
# backwards-compatibility handling
subset_by_index = subset_by_index if (eigvals is None) else eigvals
subset = (subset_by_index is not None) or (subset_by_value is not None)
# Both subsets can't be given
if subset_by_index and subset_by_value:
raise ValueError('Either index or value subset can be requested.')
# Take turbo into account if all conditions are met otherwise ignore
if turbo and b is not None:
driver = 'gvx' if subset else 'gvd'
# Check indices if given
if subset_by_index:
lo, hi = [int(x) for x in subset_by_index]
if not (0 <= lo <= hi < n):
raise ValueError('Requested eigenvalue indices are not valid. '
'Valid range is [0, {}] and start <= end, but '
'start={}, end={} is given'.format(n-1, lo, hi))
# fortran is 1-indexed
drv_args.update({'range': 'I', 'il': lo + 1, 'iu': hi + 1})
if subset_by_value:
lo, hi = subset_by_value
if not (-inf <= lo < hi <= inf):
raise ValueError('Requested eigenvalue bounds are not valid. '
'Valid range is (-inf, inf) and low < high, but '
'low={}, high={} is given'.format(lo, hi))
drv_args.update({'range': 'V', 'vl': lo, 'vu': hi})
# fix prefix for lapack routines
pfx = 'he' if cplx else 'sy'
# decide on the driver if not given
# first early exit on incompatible choice
if driver:
if b is None and (driver in ["gv", "gvd", "gvx"]):
raise ValueError('{} requires input b array to be supplied '
'for generalized eigenvalue problems.'
''.format(driver))
if (b is not None) and (driver in ['ev', 'evd', 'evr', 'evx']):
raise ValueError('"{}" does not accept input b array '
'for standard eigenvalue problems.'
''.format(driver))
if subset and (driver in ["ev", "evd", "gv", "gvd"]):
raise ValueError('"{}" cannot compute subsets of eigenvalues'
''.format(driver))
# Default driver is evr and gvd
else:
driver = "evr" if b is None else ("gvx" if subset else "gvd")
lwork_spec = {
'syevd': ['lwork', 'liwork'],
'syevr': ['lwork', 'liwork'],
'heevd': ['lwork', 'liwork', 'lrwork'],
'heevr': ['lwork', 'lrwork', 'liwork'],
}
if b is None: # Standard problem
drv, drvlw = get_lapack_funcs((pfx + driver, pfx+driver+'_lwork'),
[a1])
clw_args = {'n': n, 'lower': lower}
if driver == 'evd':
clw_args.update({'compute_v': 0 if _job == "N" else 1})
lw = _compute_lwork(drvlw, **clw_args)
# Multiple lwork vars
if isinstance(lw, tuple):
lwork_args = dict(zip(lwork_spec[pfx+driver], lw))
else:
lwork_args = {'lwork': lw}
drv_args.update({'lower': lower, 'compute_v': 0 if _job == "N" else 1})
w, v, *other_args, info = drv(a=a1, **drv_args, **lwork_args)
else: # Generalized problem
# 'gvd' doesn't have lwork query
if driver == "gvd":
drv = get_lapack_funcs(pfx + "gvd", [a1, b1])
lwork_args = {}
else:
drv, drvlw = get_lapack_funcs((pfx + driver, pfx+driver+'_lwork'),
[a1, b1])
# generalized drivers use uplo instead of lower
lw = _compute_lwork(drvlw, n, uplo=uplo)
lwork_args = {'lwork': lw}
drv_args.update({'uplo': uplo, 'jobz': _job})
w, v, *other_args, info = drv(a=a1, b=b1, **drv_args, **lwork_args)
# m is always the first extra argument
w = w[:other_args[0]] if subset else w
v = v[:, :other_args[0]] if (subset and not eigvals_only) else v
# Check if we had a successful exit
if info == 0:
if eigvals_only:
return w
else:
return w, v
else:
if info < -1:
raise LinAlgError('Illegal value in argument {} of internal {}'
''.format(-info, drv.typecode + pfx + driver))
elif info > n:
raise LinAlgError('The leading minor of order {} of B is not '
'positive definite. The factorization of B '
'could not be completed and no eigenvalues '
'or eigenvectors were computed.'.format(info-n))
else:
drv_err = {'ev': 'The algorithm failed to converge; {} '
'off-diagonal elements of an intermediate '
'tridiagonal form did not converge to zero.',
'evx': '{} eigenvectors failed to converge.',
'evd': 'The algorithm failed to compute an eigenvalue '
'while working on the submatrix lying in rows '
'and columns {0}/{1} through mod({0},{1}).',
'evr': 'Internal Error.'
}
if driver in ['ev', 'gv']:
msg = drv_err['ev'].format(info)
elif driver in ['evx', 'gvx']:
msg = drv_err['evx'].format(info)
elif driver in ['evd', 'gvd']:
if eigvals_only:
msg = drv_err['ev'].format(info)
else:
msg = drv_err['evd'].format(info, n+1)
else:
msg = drv_err['evr']
raise LinAlgError(msg)